A single-step high-order implicit time integration scheme for the solution of transient and wave propagation problems is presented. It is constructed from the Pad\'e expansions of the matrix exponential solution of a system of first-order ordinary differential equations formulated in the state-space. A computationally efficient scheme is developed exploiting the techniques of polynomial factorization and partial fractions of rational functions, and by decoupling the solution for the displacement and velocity vectors. An important feature of the novel algorithm is that no direct inversion of the mass matrix is required. From the diagonal Pad\'e expansion of order $M$ a time-stepping scheme of order $2M$ is developed. Here, each elevation of the accuracy by two orders results in an additional system of real or complex sparse equations to be solved. These systems are comparable in complexity to the standard Newmark method, i.e., the effective system matrix is a linear combination of the static stiffness, damping, and mass matrices. It is shown that the second-order scheme is equivalent to Newmark's constant average acceleration method, often also referred to as trapezoidal rule. The proposed time integrator has been implemented in MATLAB using the built-in direct linear equation solvers. In this article, numerical examples featuring nearly one million degrees of freedom are presented. High-accuracy and efficiency in comparison with common second-order time integration schemes are observed. The MATLAB-implementation is available from the authors upon request or from the GitHub repository (to be added).
翻译:提出了解决瞬态和波波传播问题的单步高端隐含时间整合计划。 它的构建来自州空间中开发的一阶普通差异方程系统矩阵指数式解决方案的扩展。 正在开发一个计算效率高的方案, 利用多元因数化技术和部分理性功能的分数, 并拆开迁移和速度矢量的解决方案。 新的算法的一个重要特点是, 不需要直接转换质量信息总库。 通过对调Pad\e的扩展, 一个2M$的定时递增方案。 这里, 每升两个定单的精确度将产生一个有待解决的新的实际或复杂的稀释方程系统。 这些系统在复杂性上与标准 Newmark 方法相似, 即, 有效的系统矩阵是静态坚硬性、 拖动和质量矩阵的线性组合。 显示第二阶梯计划相当于新马克的常态平均加速法, 一个时间级递增法, 也常常被称作“ AT- AB ” 快速递增规则。 拟议的系统矩阵整合是使用直置式的一条时间规则 。 。 和直线性平式 。 在直线性要求中, 在直线式中, 正在使用直线性要求中, 正在安装的递解式 度 度 度 度 运行中, 正在使用直线性要求 直线性要求 。