We prove new optimality results for adaptive mesh refinement algorithms for non-symmetric, and time-dependent problems by proposing a generalization of quasi-orthogonality which follows directly from the coercivity of the underlying problem. The quasi-orthogonality of Galerkin solutions is a key argument in modern proofs of optimal convergence of adaptive mesh refinement algorithms. Our generalization together with other well-understood properties of the error estimator implies linear convergence of the estimator and hence rate optimal convergence. This approach provides a simple proof of optimality for non-symmetric FEM-BEM coupling. Moreover, it allows us to prove optimal convergence of an adaptive time-stepping scheme for parabolic equations.
翻译:我们通过提出从根本问题的共性直接产生的准正反正法的概括化,证明对非对称和时间问题进行适应性网格改进算法的新最佳结果。 Galerkin 解决方案的准正反差性是适应性网格改进算法最佳趋同的现代证据中的关键论据。 我们的概括化和其他广为理解的错误估计值的特性意味着测算符的线性趋同,从而也意味着最佳的速率趋同。 这种方法简单证明了非对称FEM-BEM 组合的最佳性。 此外,它使我们能够证明对抛物方的适应性时间步法的最佳趋同。