This paper studies a generalized busy-time scheduling model on heterogeneous machines. The input to the model includes a set of jobs and a set of machine types. Each job has a size and a time interval during which it should be processed. Each job is to be placed on a machine for execution. Different types of machines have distinct capacities and cost rates. The total size of the jobs running on a machine must always be kept within the machine's capacity, giving rise to placement restrictions for jobs of various sizes among the machine types. Each machine used is charged according to the time duration in which it is busy, i.e., it is processing jobs. The objective is to schedule the jobs onto machines to minimize the total cost of all the machines used. We develop an $O(1)$-approximation algorithm in the offline setting and an $O(\mu)$-competitive algorithm in the online setting (where $\mu$ is the max/min job length ratio), both of which are asymptotically optimal.
翻译:本文研究的是不同机器的普遍繁忙时间排期模式。 给模型的输入包括一套工作和一套机器类型。 每个工作都有一定的大小和时间间隔, 需要处理。 每个工作都要放在机器上执行。 不同类型的机器有不同的能力和成本率。 机器上的工作总规模必须始终保持在机器的容量之内, 使机器类型中不同尺寸的工作受到职位设置限制。 使用的每台机器都根据其繁忙的时间段计费, 即它正在处理工作。 目标是将工作排在机器上, 以尽量减少所有机器的总成本。 我们在离线设置中开发了1美元( 1美元) 的代理算法, 在网络设置中开发了1美元( mu) 美元( 美元) 的竞争性算法, 两者都是同样最理想的。