Leverage large language model (LLM) to refer the fault is considered to be a potential solution for intelligent network fault diagnosis. However, how to represent network information in a paradigm that can be understood by LLMs has always been a core issue that has puzzled scholars in the field of network intelligence. To address this issue, we propose LLM-based Network Semantic Generation (LNSG) algorithm, which integrates semanticization and symbolization methods to uniformly describe the entire multi-modal network information. Based on the LNSG and LLMs, we present NetSemantic, a plug-and-play, data-independent, network information semantic fault diagnosis framework. It enables rapid adaptation to various network environments and provides efficient fault diagnosis capabilities. Experimental results demonstrate that NetSemantic excels in network fault diagnosis across various complex scenarios in a zero-shot manner.
翻译:暂无翻译