In spatio-temporal point pattern analysis, one of the main statistical objectives is to estimate the first-order intensity function, i.e., the expected number of points per unit area and unit time. This estimation is usually carried out non-parametrically through kernel functions, where one of the most frequent handicaps is the selection of kernel bandwidths prior to estimation. This work presents an intensity estimation mechanism in which the spatial and temporal bandwidths change at each data point in a spatio-temporal point pattern. This class of estimators is called adaptive estimators, and although there have been studied in spatial settings, little has been said about them in the spatio-temporal context. We define the adaptive intensity estimator in the spatio-temporal context and extend a partitioning technique based on the bandwidths quantiles to perform a fast estimation. We demonstrate through simulation that this technique works well in practice with the partition estimator approximating the direct estimator and much faster computation time. Finally, we apply our method to estimate the spatio-temporal intensity of fires in the Amazonia basin.
翻译:在spatio-时间点模式分析中,主要统计目标之一是估计第一阶强度函数,即每个单位面积和单位时间的预期点数。这一估计通常通过内核函数进行,其中最常见的障碍之一是在估计之前选择内核带宽。这项工作提出了一个强度估计机制,使空间和时空带宽在spatio-时点模式的每个数据点上发生变化。这一类估计器被称为适应性估计器,虽然在空间环境中进行了研究,但在空间-时空环境中很少谈论它们。我们界定了地圈-时空环境中的适应性强度估计器,并扩展了基于带宽夸度进行快速估计的隔断技术。我们通过模拟来证明,这种技术在实践中与分区估计器相适应直接估计器很有效,而且计算时间要快得多。最后,我们运用了我们的方法来估计亚马孙河流域的火势强度。