Image inpainting is a key technique in image processing task to predict the missing regions and generate realistic images. Given the advancement of existing generative inpainting models with feature extraction, propagation and reconstruction capabilities, there is lack of high-quality feature extraction and transfer mechanisms in deeper layers to tackle persistent aberrations on the generated inpainted regions. Our method, V-LinkNet, develops high-level feature transference to deep level textural context of inpainted regions our work, proposes a novel technique of combining encoders learning through a recursive residual transition layer (RSTL). The RSTL layer easily adapts dual encoders by increasing the unique semantic information through direct communication. By collaborating the dual encoders structure with contextualised feature representation loss function, our system gains the ability to inpaint with high-level features. To reduce biases from random mask-image pairing, we introduce a standard protocol with paired mask-image on the testing set of CelebA-HQ, Paris Street View and Places2 datasets. Our results show V-LinkNet performed better on CelebA-HQ and Paris Street View using this standard protocol. We will share the standard protocol and our codes with the research community upon acceptance of this paper.
翻译:图像映射是图像处理任务中的一种关键技术,用于预测缺失的区域并生成现实的图像。鉴于现有具有地貌提取、传播和重建能力的基因涂料模型的进步,在更深层缺乏高质量的地貌提取和传输机制,以解决生成的地貌涂料区域的持续偏差。我们的方法V-LinkNet开发高层次地貌特征转换到涂料区域深层次的质谱背景,我们的工作提出了一种新型技术,即通过循环剩余过渡层(RSTL)将编译器学习结合起来。RSTL层通过直接通信增加独特的语义信息,很容易适应双重的编码。通过与具有地貌特征标注损失功能的双重编码结构合作,我们的系统获得了用高层次特征涂料涂料的能力。为了减少随机的蒙面图像配对的偏差,我们引入了一套标准协议,用配对制的面具模拟来测试CelebA-HQ、巴黎街道视图和定位2数据集。我们的成果显示V-LinkNet通过直接通信传输的语标码,我们将在SelebA-Q和Paseral 标准协议上更好地进行我们的Serview。