Pose graph optimization is a non-convex optimization problem encountered in many areas of robotics perception. Its convergence to an accurate solution is conditioned by two factors: the non-linearity of the cost function in use and the initial configuration of the pose variables. In this paper, we present HiPE, a novel hierarchical algorithm for pose graph initialization. Our approach exploits a coarse-grained graph that encodes an abstract representation of the problem geometry. We construct this graph by combining maximum likelihood estimates coming from local regions of the input. By leveraging the sparsity of this representation, we can initialize the pose graph in a non-linear fashion, without computational overhead compared to existing methods. The resulting initial guess can effectively bootstrap the fine-grained optimization that is used to obtain the final solution. In addition, we perform an empirical analysis on the impact of different cost functions on the final estimate. Our experimental evaluation shows that the usage of HiPE leads to a more efficient and robust optimization process, comparing favorably with state-of-the-art methods.
翻译:浮雕图形优化是一个在机器人感知的许多领域遇到的非convex优化问题。 它与准确解决方案的趋同取决于两个因素: 使用的成本函数的非线性以及构成变量的初始配置。 在本文中, 我们展示了HIPE, 一种用于配置图形初始化的新型等级算法。 我们的方法利用了一个粗略的图表, 将问题的抽象表达方式编码为几何。 我们通过将来自输入的本地区域的最大可能性估计组合起来来构建这个图形。 通过利用这种表达方式的广度, 我们可以以非线性方式初始化图像图, 而不使用与现有方法相比的计算间接费用。 由此得出的初步猜测可以有效地将用于获取最终解决方案的精细精细的优化方法绑起来。 此外, 我们对不同成本函数对最终估算的影响进行了经验分析。 我们的实验评估表明, 高精度图像的使用可以导致一个更高效、更稳健的优化过程, 并且与最先进的方法相比较。