The voter process is a classic stochastic process that models the invasion of a mutant trait $A$ (e.g., a new opinion, belief, legend, genetic mutation, magnetic spin) in a population of agents (e.g., people, genes, particles) who share a resident trait $B$, spread over the nodes of a graph. An agent may adopt the trait of one of its neighbors at any time, while the invasion bias $r\in(0,\infty)$ quantifies the stochastic preference towards ($r>1$) or against ($r<1$) adopting $A$ over $B$. Success is measured in terms of the fixation probability, i.e., the probability that eventually all agents have adopted the mutant trait $A$. In this paper we study the problem of fixation probability maximization under this model: given a budget $k$, find a set of $k$ agents to initiate the invasion that maximizes the fixation probability. We show that the problem is NP-hard for both $r>1$ and $r<1$, while the latter case is also inapproximable within any multiplicative factor. On the positive side, we show that when $r>1$, the optimization function is submodular and thus can be greedily approximated within a factor $1-1/e$. An experimental evaluation of some proposed heuristics corroborates our results.
翻译:选民过程是一个典型的随机过程,它模拟了突变特质美元(例如新观点、信仰、传说、基因突变、磁旋)在一组具有常住特质的物剂(例如人、基因、粒子)中侵入美元(例如新观点、信仰、传说、遗传突变、磁旋),这些物剂在图节点上散布,具有常住特质的美元。在本文中,一个物剂可以采用其邻居之一的特质,而入侵偏向美元(0美元/因弗蒂)则将突变特质偏向于1美元(即新观点、信仰、传说、传奇、遗传变异、基因变异、磁旋律等)的特质($ 美元 ), 以美元 美元, 以固定特质优于1美元 美元 或 美元 美元 美元, 以固定的特质优于1 美元 美元 。 我们表明, 问题在于某种侧面值 美元 和 超值的正值的正值 。