Reachability types are a recent proposal that has shown promise in scaling to higher-order but monomorphic settings, tracking aliasing and separation on top of a substrate inspired by separation logic. The prior $\lambda^*$ reachability type system qualifies types with sets of reachable variables and guarantees separation if two terms have disjoint qualifiers. However, naive extensions with type polymorphism and/or precise reachability polymorphism are unsound, making $\lambda^*$ unsuitable for adoption in real languages. Combining reachability and type polymorphism that is precise, sound, and parametric remains an open challenge. This paper presents a rethinking of the design of reachability tracking and proposes a solution to the key challenge of reachability polymorphism. Instead of always tracking the transitive closure of reachable variables as in the original design, we only track variables reachable in a single step and compute transitive closures only when necessary, thus preserving chains of reachability over known variables that can be refined using substitution. To enable this property, we introduce a new freshness qualifier, which indicates variables whose reachability sets may grow during evaluation steps. These ideas yield the simply-typed $\lambda^\diamond$-calculus with precise lightweight, i.e., quantifier-free, reachability polymorphism, and the $\mathsf{F}_{<:}^\diamond$-calculus with bounded parametric polymorphism over types and reachability qualifiers. We prove type soundness and a preservation of separation property in Coq.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员