The rise of advanced persistent threats (APTs) has marked a significant cybersecurity challenge, characterized by sophisticated orchestration, stealthy execution, extended persistence, and targeting valuable assets across diverse sectors. Provenance graph-based kernel-level auditing has emerged as a promising approach to enhance visibility and traceability within intricate network environments. However, it still faces challenges including reconstructing complex lateral attack chains, detecting dynamic evasion behaviors, and defending smart adversarial subgraphs. To bridge the research gap, this paper proposes an efficient and robust APT defense scheme leveraging provenance graphs, including a network-level distributed audit model for cost-effective lateral attack reconstruction, a trust-oriented APT evasion behavior detection strategy, and a hidden Markov model based adversarial subgraph defense approach. Through prototype implementation and extensive experiments, we validate the effectiveness of our system. Lastly, crucial open research directions are outlined in this emerging field.
翻译:暂无翻译