We determine the computational complexity of approximately counting and sampling independent sets of a given size in bounded-degree graphs. That is, we identify a critical density $\alpha_c(\Delta)$ and provide (i) for $\alpha < \alpha_c(\Delta)$ randomized polynomial-time algorithms for approximately sampling and counting independent sets of given size at most $\alpha n$ in $n$-vertex graphs of maximum degree $\Delta$; and (ii) a proof that unless NP=RP, no such algorithms exist for $\alpha>\alpha_c(\Delta)$. The critical density is the occupancy fraction of the hard core model on the complete graph $K_{\Delta+1}$ at the uniqueness threshold on the infinite $\Delta$-regular tree, giving $\alpha_c(\Delta)\sim\frac{e}{1+e}\frac{1}{\Delta}$ as $\Delta\to\infty$. Our methods apply more generally to anti-ferromagnetic 2-spin systems and motivate new questions in extremal combinatorics.
翻译:我们确定在约束度图形中大约计算和取样某一尺寸独立数组的计算复杂性。 也就是说, 我们确定一个关键密度$\alpha_c(\Delta)$, 并提供 (一) ALpha <\alpha_c(\Delta)$ 随机化多圆时算法, 大约在最大度为$\alpha n$(Delta) 的顶点树上, 以最大度为$\alpha_ c(Delta) 计算和计算特定尺寸独立数组, 并且 (二) 证明, 除非 NP=RP, $\alpha_ alpha_c(\Delta) $ 的关键密度是完整图 $K\\\\\ delta+1} 硬核心模型的占用部分, 在无限值为$\Delta$(Delta)\ c(Delta)\ simle- plexexexexexpexget of $al- grogain commagine- grotical- grops- gromagystryls- grost- grost- progyls.