Recent advances in product bundling have leveraged multimodal information through sophisticated encoders, but remain constrained by limited semantic understanding and a narrow scope of knowledge. Therefore, some attempts employ In-context Learning (ICL) to explore the potential of large language models (LLMs) for their extensive knowledge and complex reasoning abilities. However, these efforts are inadequate in understanding mulitmodal data and exploiting LLMs' knowledge for product bundling. To bridge the gap, we introduce Bundle-MLLM, a novel framework that fine-tunes LLMs through a hybrid item tokenization approach within a well-designed optimization strategy. Specifically, we integrate textual, media, and relational data into a unified tokenization, introducing a soft separation token to distinguish between textual and non-textual tokens. Additionally, a streamlined yet powerful multimodal fusion module is employed to embed all non-textual features into a single, informative token, significantly boosting efficiency. To tailor product bundling tasks for LLMs, we reformulate the task as a multiple-choice question with candidate items as options. We further propose a progressive optimization strategy that fine-tunes LLMs for disentangled objectives: 1) learning bundle patterns and 2) enhancing multimodal semantic understanding specific to product bundling. Extensive experiments on four datasets across two domains demonstrate that our approach outperforms a range of state-of-the-art (SOTA) methods.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
12+阅读 · 2021年9月13日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员