Data augmentation is a commonly used approach to improving the generalization of deep learning models. Recent works show that learned data augmentation policies can achieve better generalization than hand-crafted ones. However, most of these works use unified augmentation policies for all samples in a dataset, which is observed not necessarily beneficial for all labels in multi-label classification tasks, i.e., some policies may have negative impacts on some labels while benefitting the others. To tackle this problem, we propose a novel Label-Based AutoAugmentation (LB-Aug) method for multi-label scenarios, where augmentation policies are generated with respect to labels by an augmentation-policy network. The policies are learned via reinforcement learning using policy gradient methods, providing a mapping from instance labels to their optimal augmentation policies. Numerical experiments show that our LB-Aug outperforms previous state-of-the-art augmentation methods by large margins in multiple benchmarks on image and video classification.
翻译:增强数据是改进深层学习模式的通用方法。 最近的工作显示,学习过的数据增强政策可以比手工制作的模型更好地实现概括化。 但是,大多数这类工作都在一个数据集中对所有样本采用统一的增强政策,据认为这不一定有利于多标签分类任务中的所有标签,也就是说,有些政策可能对某些标签有负面影响,而对另一些则有利。为了解决这一问题,我们为多标签设想方案提出了一个新的Label-B-Aug(LB-Aug)方法,在多标签方案中,通过增强政策由增强政策网络产生,通过利用政策梯度方法加强学习,从实例标签到最佳增强政策提供图谱。 数字实验显示,我们的LB-Aug(LB-Aug)在图像和视频分类的多个基准中,以大边距将先前的“最先进的增强方法”成形。