Deep latent variable generative models based on variational autoencoder (VAE) have shown promising performance for audiovisual speech enhancement (AVSE). The underlying idea is to learn a VAEbased audiovisual prior distribution for clean speech data, and then combine it with a statistical noise model to recover a speech signal from a noisy audio recording and video (lip images) of the target speaker. Existing generative models developed for AVSE do not take into account the sequential nature of speech data, which prevents them from fully incorporating the power of visual data. In this paper, we present an audiovisual deep Kalman filter (AV-DKF) generative model which assumes a first-order Markov chain model for the latent variables and effectively fuses audiovisual data. Moreover, we develop an efficient inference methodology to estimate speech signals at test time. We conduct a set of experiments to compare different variants of generative models for speech enhancement. The results demonstrate the superiority of the AV-DKF model compared with both its audio-only version and the non-sequential audio-only and audiovisual VAE-based models.


翻译:基于变异自动读取器(VAE)的深潜可变基因模型显示,视听语音增强(AVSE)的性能很有希望。基本想法是学习VAE基础的视听预发清洁语音数据,然后与统计噪音模型相结合,以便从目标演讲者的音响录音和视频(翻页图像)中恢复语音信号。为AVSE开发的现有基因模型没有考虑到语音数据的顺序性质,这使它们无法充分纳入视觉数据的力量。在本文中,我们展示了视听深Kalman过滤器(AV-DKF)的基因模型,它假定了潜伏变量的第一阶马尔科夫链模型,并有效地结合了视听数据。此外,我们还开发了一种高效的推论方法,用以在测试时估计语音信号。我们进行了一系列实验,以比较增强语音增强的变异变组合模型。结果显示AV-DKF模型与其音频版本和非顺序音频VAE基和视听VAE基模型相比的优越性。

0
下载
关闭预览

相关内容

语音增强是指当语音信号被各种各样的噪声干扰、甚至淹没后,从噪声背景中提取有用的语音信号,抑制、降低噪声干扰的技术。一句话,从含噪语音中提取尽可能纯净的原始语音。
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
175+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年12月20日
Arxiv
15+阅读 · 2021年6月27日
Arxiv
11+阅读 · 2018年3月23日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员