Meta-learning can extract an inductive bias from previous learning experience and assist the training of new tasks. It is often realized through optimizing a meta-model with the evaluation loss of task-specific solvers. Most existing algorithms sample non-overlapping $\mathit{support}$ sets and $\mathit{query}$ sets to train and evaluate the solvers respectively due to simplicity ($\mathcal{S}$/$\mathcal{Q}$ protocol). Different from $\mathcal{S}$/$\mathcal{Q}$ protocol, we can also evaluate a task-specific solver by comparing it to a target model $\mathcal{T}$, which is the optimal model for this task or a model that behaves well enough on this task ($\mathcal{S}$/$\mathcal{T}$ protocol). Although being short of research, $\mathcal{S}$/$\mathcal{T}$ protocol has unique advantages such as offering more informative supervision, but it is computationally expensive. This paper looks into this special evaluation method and takes a step towards putting it into practice. We find that with a small ratio of tasks armed with target models, classic meta-learning algorithms can be improved a lot without consuming many resources. We empirically verify the effectiveness of $\mathcal{S}$/$\mathcal{T}$ protocol in a typical application of meta-learning, $\mathit{i.e.}$, few-shot learning. In detail, after constructing target models by fine-tuning the pre-trained network on those hard tasks, we match the task-specific solvers and target models via knowledge distillation.


翻译:元化学习可以从以往的学习经验中提取感官偏差, 并协助培训新任务。 它通常通过优化一个元模型, 使具体任务解决者失去评估损失来实现。 大多数现有的算法取样不重复 $\ mathit{ support} set and $\ mathet{query} $, 用于培训和评估解决问题者, 分别由于简单 ($\ mathcal{S}$/$\ mathcal} 协议) 。 与 $\ mathcal{ slot{$/ mathcal} 协议不同, 我们也可以通过将它与目标模型 $\ mathcal{T} 比较来评估具体任务解决者 。 本文将这个任务的最佳模型或一个在任务上表现良好的模型 ($\ mathital{s} $/ mathcall} competroduction $rice) 。 尽管研究不足, $mexmall a tremal deal deal deal deal exal deal deal drodustration.

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
32+阅读 · 2021年6月12日
最新《神经架构搜索NAS》教程,33页pdf
专知会员服务
27+阅读 · 2020年12月2日
【知识图谱@ACL2020】Knowledge Graphs in Natural Language Processing
专知会员服务
66+阅读 · 2020年7月12日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
8+阅读 · 2020年10月7日
Learning from Few Samples: A Survey
Arxiv
77+阅读 · 2020年7月30日
Arxiv
5+阅读 · 2020年6月16日
Arxiv
14+阅读 · 2019年9月11日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
Arxiv
5+阅读 · 2018年9月11日
Few Shot Learning with Simplex
Arxiv
5+阅读 · 2018年7月27日
Arxiv
7+阅读 · 2018年6月8日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Arxiv
8+阅读 · 2020年10月7日
Learning from Few Samples: A Survey
Arxiv
77+阅读 · 2020年7月30日
Arxiv
5+阅读 · 2020年6月16日
Arxiv
14+阅读 · 2019年9月11日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
Arxiv
5+阅读 · 2018年9月11日
Few Shot Learning with Simplex
Arxiv
5+阅读 · 2018年7月27日
Arxiv
7+阅读 · 2018年6月8日
Top
微信扫码咨询专知VIP会员