Conditional disclosure of secrets (CDS) is the problem of disclosing as efficiently as possible, one secret from Alice and Bob to Carol if and only if the inputs at Alice and Bob satisfy some function $f$. The information theoretic capacity of CDS is the maximum number of bits of the secret that can be securely disclosed per bit of total communication. All CDS instances, where the capacity is the highest and is equal to $1/2$, are recently characterized through a noise and signal alignment approach and are described using a graph representation of the function $f$. In this work, we go beyond the best case scenarios and further develop the alignment approach to characterize the linear capacity of a class of CDS instances to be $(\rho-1)/(2\rho)$, where $\rho$ is a covering parameter of the graph representation of $f$.
翻译:有条件披露秘密(CDS)是尽可能高效地披露秘密的问题,从Alice和Bob到Carol的一个秘密,如果而且只有在Alice和Bob的投入满足某种功能(f美元)的情况下,才能从Alice和Bob到Carol的秘密。CDS的信息理论能力是机密秘密的最大比特数,可以安全地在通信总量的每位中披露。所有CDS的例子,其容量最高,相当于1/2美元,最近都通过噪音和信号对齐方法加以描述,并用函数的图表表示美元。在这项工作中,我们超越了最佳情况假设,进一步发展了调整方法,将某类CDS案例的线性能力定性为$(rho-1)/(2\rho)美元,其中$是图表代表美元(f美元)的参数。