The paper describes a method for measuring the similarity and symmetry of an image annotated with bounding boxes indicating image objects. The latter representation became popular recently due to the rapid development of fast and efficient deep-learning-based object-detection methods. The proposed approach allows for comparing sets of bounding boxes to estimate the degree of similarity of their underlying images. It is based on the fuzzy approach that uses the fuzzy mutual position (FMP) matrix to describe spatial composition and relations between bounding boxes within an image. A method of computing the similarity of two images described by their FMP matrices is proposed and the algorithm of its computation. It outputs the single scalar value describing the degree of content-based image similarity. By modifying the method`s parameters, instead of similarity, the reflectional symmetry of object composition may also be measured. The proposed approach allows for measuring differences in objects` composition of various intensities. It is also invariant to translation and scaling and - in case of symmetry detection - position and orientation of the symmetry axis. A couple of examples illustrate the method.


翻译:本文介绍了一种方法,用以测量附加说明的图像与显示图像对象的捆绑框的相似性和对称性,后者由于快速而高效的深学习天体探测方法的迅速发展而最近成为流行的表示方式,拟议方法允许比较成套捆绑框,以估计其基本图像的相似程度,其依据是使用模糊的相互位置矩阵来描述图像内捆绑框的空间组成和关系,一种计算其FMP矩阵描述的两张图像相似性的方法,以及其计算方法的算法,它提供了描述内容基于图像的相似程度的单一比例值。通过修改方法的参数,而不是相似性,也可以测量物体构成的反射对称性。拟议方法允许测量物体`各种强度的构成'差异,还可用于翻译和缩放,在对称性检测中,还无法对称轴的位置和方向进行对等性测量。一些例子说明该方法。

0
下载
关闭预览

相关内容

专知会员服务
75+阅读 · 2021年9月27日
【DeepMind】强化学习教程,83页ppt
专知会员服务
152+阅读 · 2020年8月7日
Python图像处理,366页pdf,Image Operators Image Processing in Python
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:BERT原理和应用的图文教程
LibRec智能推荐
5+阅读 · 2018年12月22日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Image Captioning: Transforming Objects into Words
Arxiv
7+阅读 · 2019年6月14日
Arxiv
6+阅读 · 2018年1月14日
VIP会员
相关资讯
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:BERT原理和应用的图文教程
LibRec智能推荐
5+阅读 · 2018年12月22日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员