A graph $G$ with $n$ vertices is called an outerstring graph if it has an intersection representation of a set of $n$ curves inside a disk such that one endpoint of every curve is attached to the boundary of the disk. Given an outerstring graph representation, the Maximum Independent Set (MIS) problem of the underlying graph can be computed in $O(s^3)$ time, where $s$ is the number of segments in the representation (Keil et al., Comput. Geom., 60:19--25, 2017). If the strings are of constant size (e.g., line segments, L-shapes, etc.), then the algorithm takes $O(n^3)$ time. In this paper, we examine the fine-grained complexity of the MIS problem on some well-known outerstring representations. We show that solving the MIS problem on grounded segment and grounded square-L representations is at least as hard as solving MIS on circle graph representations. Note that no $O(n^{2-\delta})$-time algorithm, $\delta>0$, is known for the MIS problem on circle graphs. For the grounded string representations where the strings are $y$-monotone simple polygonal paths of constant length with segments at integral coordinates, we solve MIS in $O(n^2)$ time and show this to be the best possible under the strong exponential time hypothesis (SETH). For the intersection graph of $n$ L-shapes in the plane, we give a $(4\cdot \log OPT)$-approximation algorithm for MIS (where $OPT$ denotes the size of an optimal solution), improving the previously best-known $(4\cdot \log n)$-approximation algorithm of Biedl and Derka (WADS 2017).


翻译:如果磁盘内有一组美元曲线的交叉表示值,则将每个曲线的一个端点附加到磁盘的边界上。鉴于外线图形的表示值,下方图形的最大独立设置(MIS)问题可以以美元计算,其中美元是代表区块数(Keil et al.,Comput. Geom., 60:19-25, 2017)。如果字符串是固定的(例如,线段, L-shapes,等等),那么算法将花费O(n)3美元的时间连接到磁盘的边界上。在本文中,我们检查某些著名的外线表示值显示MIS问题的细微复杂度。我们显示,在基段和平方表示区块上解决MIS问题至少是困难的,在圆形图形表上(n2-delta),在时间平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面。注意,在平面平面平面平面平面平面平面平平平平面平面平面平面平面平面平面平面平面平面平面平平平平面平面平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平面平面平平平平平平平平平平平面。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
专知会员服务
84+阅读 · 2020年12月5日
【Manning新书】现代Java实战,592页pdf
专知会员服务
99+阅读 · 2020年5月22日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
159+阅读 · 2020年1月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
已删除
将门创投
7+阅读 · 2020年3月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年9月29日
Learning to Importance Sample in Primary Sample Space
VIP会员
相关VIP内容
【图与几何深度学习】Graph and geometric deep learning,49页ppt
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
专知会员服务
84+阅读 · 2020年12月5日
【Manning新书】现代Java实战,592页pdf
专知会员服务
99+阅读 · 2020年5月22日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
159+阅读 · 2020年1月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
已删除
将门创投
7+阅读 · 2020年3月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员