Data generated by edge devices has the potential to train intelligent autonomous systems across various domains. Despite the emergence of diverse machine learning approaches addressing privacy concerns and utilizing distributed data, security issues persist due to the sensitive storage of data shards in disparate locations. This paper introduces a potentially groundbreaking paradigm for machine learning model training, specifically designed for scenarios with only a single magnetic image and its corresponding label image available. We harness the capabilities of Deep Learning to generate concise yet informative samples, aiming to overcome data scarcity. Through the utilization of deep learning's internal representations, our objective is to efficiently address data scarcity issues and produce meaningful results. This methodology presents a promising avenue for training machine learning models with minimal data.
翻译:暂无翻译