The Weisfeiler-Lehman (WL) test has been widely applied to graph kernels, metrics, and neural networks. However, it considers only the graph consistency, resulting in the weak descriptive power of structural information. Thus, it limits the performance improvement of applied methods. In addition, the similarity and distance between graphs defined by the WL test are in coarse measurements. To the best of our knowledge, this paper clarifies these facts for the first time and defines a metric we call the Wasserstein WL subtree (WWLS) distance. We introduce the WL subtree as the structural information in the neighborhood of nodes and assign it to each node. Then we define a new graph embedding space based on $L_1$-approximated tree edit distance ($L_1$-TED): the $L_1$ norm of the difference between node feature vectors on the space is the $L_1$-TED between these nodes. We further propose a fast algorithm for graph embedding. Finally, we use the Wasserstein distance to reflect the $L_1$-TED to the graph level. The WWLS can capture small changes in structure that are difficult with traditional metrics. We demonstrate its performance in several graph classification and metric validation experiments.
翻译:Weisfeiler-Lehman (WL) 测试首次被广泛应用于图形内核、 度量和神经网络。 但是, 它只考虑图形的一致性, 导致结构信息的描述力薄弱。 因此, 它限制了应用方法的性能改进。 此外, WL 测试所定义的图表之间的相似性和距离是粗劣的测量。 据我们所知, 本文首次澄清了这些事实, 并定义了我们称之为Wasserstein WL(WWLS) 子树(WWWLS) 的距离。 我们引入WL 子树作为节点附近的结构信息, 并将其分配给每个节点。 然后我们定义了一个新的嵌入空间的图表, 以$1美元为基点, 以1美元为基点, 修改应用方法的距离($L_ 1美元- TED): 空间结点矢量矢量矢量的差值标准是$1美元。 我们进一步建议用快速的算法来嵌入图形。 最后, 我们用瓦斯坦斯坦 远程 来反映 $_ 1 美元 方向 和 标准 标准 标准 水平 显示 的 的 。