Intent detection and slot filling are important tasks in spoken and natural language understanding. However, Vietnamese is a low-resource language in these research topics. In this paper, we present the first public intent detection and slot filling dataset for Vietnamese. In addition, we also propose a joint model for intent detection and slot filling, that extends the recent state-of-the-art JointBERT+CRF model with an intent-slot attention layer to explicitly incorporate intent context information into slot filling via "soft" intent label embedding. Experimental results on our Vietnamese dataset show that our proposed model significantly outperforms JointBERT+CRF. We publicly release our dataset and the implementation of our model at: https://github.com/VinAIResearch/JointIDSF
翻译:在口头和自然语言理解方面,探测和填补空档是重要的任务。然而,越南是这些研究课题中资源贫乏的语言。在本文件中,我们首次介绍了越南的公开意图探测和填补空档数据集。此外,我们还提议了一个意图探测和填补空档的联合模型,以扩展最近的最先进的联合BERT+CRF模型,并用一个意向定位关注层,通过“软”意图嵌入标签将意向背景信息明确纳入空档填充。我们越南数据集的实验结果表明,我们提议的模型大大优于联合BERT+CRF。我们公开发布我们的数据集和实施我们的模型,网址是:https://github.com/VinAIresearch/UniIDSF。