The goal of data-free meta-learning is to learn useful prior knowledge from a collection of pre-trained models without accessing their training data. However, existing works only solve the problem in parameter space, which (i) ignore the fruitful data knowledge contained in the pre-trained models; (ii) can not scale to large-scale pre-trained models; (iii) can only meta-learn pre-trained models with the same network architecture. To address those issues, we propose a unified framework, dubbed PURER, which contains: (1) ePisode cUrriculum inveRsion (ECI) during data-free meta training; and (2) invErsion calibRation following inner loop (ICFIL) during meta testing. During meta training, we propose ECI to perform pseudo episode training for learning to adapt fast to new unseen tasks. Specifically, we progressively synthesize a sequence of pseudo episodes by distilling the training data from each pre-trained model. The ECI adaptively increases the difficulty level of pseudo episodes according to the real-time feedback of the meta model. We formulate the optimization process of meta training with ECI as an adversarial form in an end-to-end manner. During meta testing, we further propose a simple plug-and-play supplement-ICFIL-only used during meta testing to narrow the gap between meta training and meta testing task distribution. Extensive experiments in various real-world scenarios show the superior performance of ours.


翻译:无数据元学习的目标是在不访问训练数据的情况下,从一组预训练模型中学习有用的先验知识。然而,现有的方法仅在参数空间中解决这个问题,忽略了预训练模型中所包含的丰富数据知识,并且不能扩展到大规模预训练模型。此外,现有方法仅能元学习具有相同网络架构的预训练模型。为了解决这些问题,我们提出了一个统一的框架,即「Purer」,其中包括: (1) 在无数据元训练过程中使用「伪episode训练」(ECI); (2) 在元测试过程中使用「内循环校准」(ICFIL)。在元训练时,我们使用 ECI 为了学习快速适应新的未见任务而进行「伪episode训练」。具体来说,我们逐步合成一系列的「伪episode」,通过提炼每个预训练模型中的训练数据来实现。 ECI 根据元模型的实时反馈适应性地提高伪episode的难度水平。我们将 ECI 的元训练优化过程以对抗形式在端对端的方式下进行。在元测试过程中,我们进一步提出了一种简单的插件-仅使用 ICFIL,它只在元测试过程中使用,旨在缩小元训练和元测试任务分布之间的差距。在各种实际场景的广泛实验中,我们的方法表现出了优越的性能。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
31+阅读 · 2021年7月15日
【Google-CMU】元伪标签的元学习,Meta Pseudo Labels
专知会员服务
31+阅读 · 2020年3月30日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Uber AI NeurIPS 2019《元学习meta-learning》教程,附92页PPT下载
专知会员服务
112+阅读 · 2019年12月13日
CVPR 2022 | 元学习在图像回归任务的表现
PaperWeekly
1+阅读 · 2022年6月11日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
21+阅读 · 2020年10月11日
Arxiv
11+阅读 · 2018年7月8日
VIP会员
相关资讯
CVPR 2022 | 元学习在图像回归任务的表现
PaperWeekly
1+阅读 · 2022年6月11日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员