In this paper, we propose a new notion of fairness violation, called Exponential R\'enyi Mutual Information (ERMI). We show that ERMI is a strong fairness violation notion in the sense that it provides upper bound guarantees on existing notions of fairness violation. We then propose the Fair Empirical Risk Minimization via ERMI regularization framework, called FERMI. Whereas most existing in-processing fairness algorithms are deterministic, we provide the first stochastic optimization method with a provable convergence guarantee for solving FERMI. Our stochastic algorithm is amenable to large-scale problems, as we demonstrate experimentally. In addition, we provide a batch (deterministic) algorithm for solving FERMI with the optimal rate of convergence. Both of our algorithms are applicable to problems with multiple (non-binary) sensitive attributes and non-binary targets. Extensive experiments show that FERMI achieves the most favorable tradeoffs between fairness violation and test accuracy across various problem setups compared with state-of-the-art baselines.


翻译:在本文中,我们提出了一个所谓的公平违规的新概念,称为Experential R\'enyi互通信息(ERMI ) 。我们表明,机构风险管理是一个强烈的公平违规概念,因为它为现有的公平违规概念提供了上限保障。然后,我们提出了通过机构风险管理规范框架(称为FERMI)实现公平风险最小化的公平经验风险。虽然大多数处理中的公平算法都是决定性的,但我们提供了第一个随机优化方法,为解决FERMI提供了可确认的趋同保证。我们的随机算法是适应大规模问题的,我们实验性地展示了这一点。此外,我们提供了一组(非定式)算法,用最佳的趋同率解决FERMI。我们两种算法都适用于多重(非二元)敏感属性和非二元目标的问题。广泛的实验表明,与最先进的基线相比,FERMI在各种问题设置中的公平违规行为和测试准确性之间实现了最有利的权衡。

0
下载
关闭预览

相关内容

专知会员服务
12+阅读 · 2021年3月13日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员