This paper introduces a novel Bayesian approach to detect changes in the variance of a Gaussian sequence model, focusing on quantifying the uncertainty in the change point locations and providing a scalable algorithm for inference. We do that by framing the problem as a product of multiple single changes in the scale parameter. We fit the model through an iterative procedure similar to what is done for additive models. The novelty is that each iteration returns a probability distribution on time instances, which captures the uncertainty in the change point location. Leveraging a recent result in the literature, we can show that our proposal is a variational approximation of the exact model posterior distribution. We study the convergence of the algorithm and the change point localization rate. Extensive experiments in simulation studies and applications to biological data illustrate the performance of our method.
翻译:本文介绍了一种新颖的贝叶西亚方法,以探测高斯序列模型差异的变化,重点是量化变化点位置的不确定性,并提供可缩放的推算算法。我们这样做的方法是将问题设置为比例参数的多重单一变化的产物。我们通过一个与添加型模型相似的迭接程序将模型适合。新颖之处是,每次迭代都返回时间实例的概率分布,从而捕捉变化点位置的不确定性。利用文献中最近的结果,我们可以显示我们的提案是精确的模型外表分布的变近。我们研究了算法和变化点定位率的趋同。模拟研究和应用生物数据的广泛实验展示了我们的方法的性能。