For a multivariate normal distribution, the sparsity of the covariance and precision matrices encodes complete information about independence and conditional independence properties. For general distributions, the covariance and precision matrices reveal correlations and so-called partial correlations between variables, but these do not, in general, have any correspondence with respect to independence properties. In this paper, we prove that, for a certain class of non-Gaussian distributions, these correspondences still hold, exactly for the covariance and approximately for the precision. The distributions -- sometimes referred to as "nonparanormal" -- are given by diagonal transformations of multivariate normal random variables. We provide several analytic and numerical examples illustrating these results.


翻译:对于多变正常分布, 共变和精密矩阵的宽度将关于独立和有条件独立属性的完整信息编码成。 对于一般分布, 共变和精确矩阵显示变量之间的相互关系和所谓的部分关联性, 但总的来说, 这些变量在独立属性方面没有任何对应关系。 在本文中, 我们证明, 对于某类非高加索分布而言, 这些通信仍然有效, 完全适合共变, 大致也符合精确性 。 分布( 有时被称为“ 非异常性 ” ) 是通过多变量普通随机变量的对角转换提供的。 我们提供了几个分析和数字例子来说明这些结果 。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
专知会员服务
159+阅读 · 2020年1月16日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月10日
Arxiv
0+阅读 · 2021年9月8日
Arxiv
4+阅读 · 2018年1月15日
Arxiv
3+阅读 · 2014年10月9日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员