In many regression settings the unknown coefficients may have some known structure, for instance they may be ordered in space or correspond to a vectorized matrix or tensor. At the same time, the unknown coefficients may be sparse, with many nearly or exactly equal to zero. However, many commonly used priors and corresponding penalties for coefficients do not encourage simultaneously structured and sparse estimates. In this paper we develop structured shrinkage priors that generalize multivariate normal, Laplace, exponential power and normal-gamma priors. These priors allow the regression coefficients to be correlated a priori without sacrificing elementwise sparsity or shrinkage. The primary challenges in working with these structured shrinkage priors are computational, as the corresponding penalties are intractable integrals and the full conditional distributions that are needed to approximate the posterior mode or simulate from the posterior distribution may be non-standard. We overcome these issues using a flexible elliptical slice sampling procedure, and demonstrate that these priors can be used to introduce structure while preserving sparsity.
翻译:在许多回归环境里,未知系数可能有一些已知的结构,例如,它们可能是在空间里排列的,或对应一个矢量矩阵或气压。同时,未知系数可能很少,许多几乎或完全等于零。然而,许多常用的先前系数和相应的系数惩罚并不鼓励同时进行结构化和稀少的估计。在本文中,我们制定了结构化的缩缩略前数,将多变常数、拉贝特、指数力和正常伽玛前数笼统化。这些前数允许回归系数具有先验关联性,而不牺牲元素的宽度或缩缩缩。与这些结构化前数相关的主要挑战可能是计算性的,因为相应的惩罚是棘手的内分数,而离子分布的近似后端模式或模拟所需的全部有条件分布可能不标准。我们用灵活的切片取样程序克服了这些问题,并证明这些前数可以用来在保存孔时引入结构。