In many regression settings the unknown coefficients may have some known structure, for instance they may be ordered in space or correspond to a vectorized matrix or tensor. At the same time, the unknown coefficients may be sparse, with many nearly or exactly equal to zero. However, many commonly used priors and corresponding penalties for coefficients do not encourage simultaneously structured and sparse estimates. In this paper we develop structured shrinkage priors that generalize multivariate normal, Laplace, exponential power and normal-gamma priors. These priors allow the regression coefficients to be correlated a priori without sacrificing elementwise sparsity or shrinkage. The primary challenges in working with these structured shrinkage priors are computational, as the corresponding penalties are intractable integrals and the full conditional distributions that are needed to approximate the posterior mode or simulate from the posterior distribution may be non-standard. We overcome these issues using a flexible elliptical slice sampling procedure, and demonstrate that these priors can be used to introduce structure while preserving sparsity.


翻译:在许多回归环境里,未知系数可能有一些已知的结构,例如,它们可能是在空间里排列的,或对应一个矢量矩阵或气压。同时,未知系数可能很少,许多几乎或完全等于零。然而,许多常用的先前系数和相应的系数惩罚并不鼓励同时进行结构化和稀少的估计。在本文中,我们制定了结构化的缩缩略前数,将多变常数、拉贝特、指数力和正常伽玛前数笼统化。这些前数允许回归系数具有先验关联性,而不牺牲元素的宽度或缩缩缩。与这些结构化前数相关的主要挑战可能是计算性的,因为相应的惩罚是棘手的内分数,而离子分布的近似后端模式或模拟所需的全部有条件分布可能不标准。我们用灵活的切片取样程序克服了这些问题,并证明这些前数可以用来在保存孔时引入结构。

0
下载
关闭预览

相关内容

【干货书】开放数据结构,Open Data Structures,337页pdf
专知会员服务
17+阅读 · 2021年9月17日
机器学习组合优化
专知会员服务
110+阅读 · 2021年2月16日
【ACML2020】张量网络机器学习:最近的进展和前沿,109页ppt
专知会员服务
55+阅读 · 2020年12月15日
【DeepMind】强化学习教程,83页ppt
专知会员服务
154+阅读 · 2020年8月7日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
8+阅读 · 2018年10月31日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月30日
Arxiv
0+阅读 · 2021年10月29日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
3+阅读 · 2014年10月9日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
8+阅读 · 2018年10月31日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员