The knowledge of channel covariance matrices is of paramount importance to the estimation of instantaneous channels and the design of beamforming vectors in multi-antenna systems. In practice, an abrupt change in channel covariance matrices may occur due to the change in the environment and the user location. Although several works have proposed efficient algorithms to estimate the channel covariance matrices after any change occurs, how to detect such a change accurately and quickly is still an open problem in the literature. In this paper, we focus on channel covariance change detection between a multi-antenna base station (BS) and a single-antenna user equipment (UE). To provide theoretical performance limit, we first propose a genie-aided change detector based on the log-likelihood ratio (LLR) test assuming the channel covariance matrix after change is known, and characterize the corresponding missed detection and false alarm probabilities. Then, this paper considers the practical case where the channel covariance matrix after change is unknown. The maximum likelihood (ML) estimation technique is used to predict the covariance matrix based on the received pilot signals over a certain number of coherence blocks, building upon which the LLR-based change detector is employed. Numerical results show that our proposed scheme can detect the change with low error probability even when the number of channel samples is small such that the estimation of the covariance matrix is not that accurate. This result verifies the possibility to detect the channel covariance change both accurately and quickly in practice.


翻译:频道共变矩阵知识对于估计瞬时信道和设计多ANTANNA系统中气态矢量的设计至关重要。在实践中,由于环境和用户位置的变化,频道共变矩阵可能会发生突变。虽然若干著作提出了在任何变化发生后估计频道共变矩阵的有效算法,但如何准确和迅速地检测这种变化仍然是文献中的一个未解决的问题。在本文中,我们侧重于多ANTANNA基站(BS)和单一ANTANNA用户设备(UE)之间频道共变变量的检测。为了提供理论性能限制,我们首先提议根据日志相似率(LLLLR)测试频道辅助变化探测器,假设在任何变化发生后对频道共变异矩阵进行估算,并描述相应的误差检测和错误警报概率概率。随后,本文件探讨了在变化后频道共变矩阵未知的实际情况。根据收到的试样信号快速预测共变矩阵,在某个试样的试样中,即使对某个频道的精确度进行了精确度测试,也能够同时对内流数据进行联合测测测测测测测测算。

0
下载
关闭预览

相关内容

在概率论和统计学中,协方差矩阵(也称为自协方差矩阵,色散矩阵,方差矩阵或方差-协方差矩阵)是平方矩阵,给出了给定随机向量的每对元素之间的协方差。 在矩阵对角线中存在方差,即每个元素与其自身的协方差。
【如何做研究】How to research ,22页ppt
专知会员服务
108+阅读 · 2021年4月17日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
60+阅读 · 2020年3月19日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
已删除
将门创投
3+阅读 · 2018年10月11日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Arxiv
3+阅读 · 2014年10月9日
VIP会员
相关资讯
已删除
将门创投
3+阅读 · 2018年10月11日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Top
微信扫码咨询专知VIP会员