Recently proposed identifiable variational autoencoder (iVAE, Khemakhem et al. (2020)) framework provides a promising approach for learning latent independent components of the data. Although the identifiability is appealing, the objective function of iVAE does not enforce the inverse relation between encoders and decoders. Without the inverse relation, representations from the encoder in iVAE may not reconstruct observations,i.e., representations lose information in observations. To overcome this limitation, we develop a new approach, covariate-informed identifiable VAE (CI-iVAE). Different from previous iVAE implementations, our method critically leverages the posterior distribution of latent variables conditioned only on observations. In doing so, the objective function enforces the inverse relation, and learned representation contains more information of observations. Furthermore, CI-iVAE extends the original iVAE objective function to a larger class and finds the optimal one among them, thus providing a better fit to the data. Theoretically, our method has tighter evidence lower bounds (ELBOs) than the original iVAE. We demonstrate that our approach can more reliably learn features of various synthetic datasets, two benchmark image datasets (EMNIST and Fashion MNIST), and a large-scale brain imaging dataset for adolescent mental health research.
翻译:最近提出的可识别的可变自动编码器框架(iVAE, Khemakhem等人(202020年))为学习数据的潜在独立组成部分提供了一个很有希望的方法。虽然识别性很吸引人,但iVAE的客观功能并没有强制实施编码器和解码器之间的反比关系。没有相反的关系,iVAE中的编码器的表述可能无法重建观测,也就是说,演示在观测中失去信息。为了克服这一限制,我们制定了一种新的方法,即可识别的可识别VAE(CI-iVAE),与以前的iVAE实施方法不同,我们的方法非常关键地利用了仅以观察为条件的潜在变量的远端分布。在这样做时,目标功能强制执行了反向关系,并学习了更多的观察信息。此外,CI-iVAE的表达方式将原始的iVAE目标功能扩展至更大的层次,找到其中的最佳功能,从而更符合数据。理论上,我们的方法比最初的iVAEE执行范围要小得多的证据(ELOs),我们的方法与最初的iVAEN-IAE的大脑成像相比,我们的数据可以更可靠地学习各种比例的数据和大脑成像。我们的数据的大规模数据。我们的数据特征可以更可靠地用于大规模地用于大规模的数据。