Real-time control for robotics is a popular research area in the reinforcement learning community. Through the use of techniques such as reward shaping, researchers have managed to train online agents across a multitude of domains. Despite these advances, solving goal-oriented tasks still requires complex architectural changes or hard constraints to be placed on the problem. In this article, we solve the problem of stacking multiple cubes by combining curriculum learning, reward shaping, and a high number of efficiently parallelized environments. We introduce two curriculum learning settings that allow us to separate the complex task into sequential sub-goals, hence enabling the learning of a problem that may otherwise be too difficult. We focus on discussing the challenges encountered while implementing them in a goal-conditioned environment. Finally, we extend the best configuration identified on a higher complexity environment with differently shaped objects.


翻译:实时控制机器人是强化学习领域的研究热点。通过使用奖励塑形等技术,研究人员已经能够训练在线代理,应用于多个领域。尽管取得了这些进展,但解决目标导向型任务仍需要对问题进行复杂的架构更改或硬性限制。在本文中,我们通过组合课程学习,奖励塑形和高效并行运行的环境来解决多个立方体的叠放问题。我们介绍了两种课程学习方法来将复杂任务分解成顺序子目标,从而实现学习本应无法完成的问题。我们重点讨论了在目标条件化环境中实施课程学习时遇到的挑战。最后,我们在形状不同的对象的更高复杂环境中扩展了最佳配置。

1
下载
关闭预览

相关内容

【CMU博士论文】课程学习,Curriculum Learning,193页pdf
专知会员服务
52+阅读 · 2022年8月13日
【2022新书】强化学习工业应用,408页pdf
专知会员服务
229+阅读 · 2022年2月3日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年6月4日
Arxiv
0+阅读 · 2023年6月2日
Arxiv
12+阅读 · 2023年1月19日
Arxiv
24+阅读 · 2021年1月25日
VIP会员
相关VIP内容
【CMU博士论文】课程学习,Curriculum Learning,193页pdf
专知会员服务
52+阅读 · 2022年8月13日
【2022新书】强化学习工业应用,408页pdf
专知会员服务
229+阅读 · 2022年2月3日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员