A hyperbolic code is an evaluation code that improves a Reed-Muller because the dimension increases while the minimum distance is not penalized. We give the necessary and sufficient conditions, based on the basic parameters of the Reed-Muller, to determine whether a Reed-Muller coincides with a hyperbolic code. Given a hyperbolic code, we find the largest Reed-Muller containing the hyperbolic code and the smallest Reed-Muller in the hyperbolic code. We then prove that similarly to Reed-Muller and Cartesian codes, the $r$-th generalized Hamming weight and the $r$-th footprint of the hyperbolic code coincide. Unlike Reed-Muller and Cartesian, determining the $r$-th footprint of a hyperbolic code is still an open problem. We give upper and lower bounds for the $r$-th footprint of a hyperbolic code that, sometimes, are sharp.
翻译:双曲代码是一种评估代码,它改进了Reed- Muller, 因为尺寸在最小距离不受处罚的情况下会增加。 我们根据Reed- Muller的基本参数给出必要和充分的条件, 以确定Reed- Muller是否与双曲代码相吻合。 鉴于双曲代码, 我们发现在双曲代码中包含双曲代码的最大 Reed- Muller 和最小的Reed- Muller 的评估代码。 我们随后证明, 与Reed- Muller 和Cartesian 代码的 Reed- Muller 相似, $Rth 通用的Hamming 重量和 $rth 的双曲代码脚印相匹配。 与 Reed- Muller 和Cartesian 不同, 确定双曲代码的$th足迹仍是一个未解决的问题。 我们给双曲代码的美元足足迹设定了上下下限。 我们给高下限, 有时是尖的 。