Increasing the batch size of a deep learning model is a challenging task. Although it might help in utilizing full available system memory during training phase of a model, it results in significant loss of test accuracy most often. LARS solved this issue by introducing an adaptive learning rate for each layer of a deep learning model. However, there are doubts on how popular distributed machine learning systems such as SystemML or MLlib will perform with this optimizer. In this work, we apply LARS optimizer to a deep learning model implemented using SystemML.We perform experiments with various batch sizes and compare the performance of LARS optimizer with \textit{Stochastic Gradient Descent}. Our experimental results show that LARS optimizer performs significantly better than Stochastic Gradient Descent for large batch sizes even with the distributed machine learning framework, SystemML.


翻译:增加深层学习模式的批量规模是一项艰巨的任务。 虽然这可能有助于在模型培训阶段使用全部可用的系统记忆, 但它往往导致测试准确性的重大损失。 劳改系统为深层学习模式的每一层引入了适应性学习率, 从而解决这个问题。 但是, 人们怀疑流行的分布式机器学习系统, 如系统ML 或 MLlib, 将如何使用这个优化器来运行。 在这项工作中, 我们应用了使用系统ML 实施的深层学习模型优化软件。 我们用不同的批量大小进行实验, 并将LARS优化软件的性能与\textit{ 随机梯源子} 进行比较。 我们的实验结果表明, 即使在分布式机器学习框架系统MLSML 下, LARS 优化软件的批量尺寸也大大优于巨型结构。

0
下载
关闭预览

相关内容

专知会员服务
45+阅读 · 2020年10月31日
【Uber AI新论文】持续元学习,Learning to Continually Learn
专知会员服务
37+阅读 · 2020年2月27日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
8+阅读 · 2018年12月6日
Federated Learning for Mobile Keyboard Prediction
Arxiv
5+阅读 · 2018年11月8日
Arxiv
6+阅读 · 2018年4月24日
Arxiv
19+阅读 · 2018年3月28日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员