Sustained high levels of blood glucose in type 2 diabetes (T2DM) can have disastrous long-term health consequences. An essential component of clinical interventions for T2DM is monitoring dietary intake to keep plasma glucose levels within an acceptable range. Yet, current techniques to monitor food intake are time intensive and error prone. To address this issue, we are developing techniques to automatically monitor food intake and the composition of those foods using continuous glucose monitors (CGMs). This article presents the results of a clinical study in which participants consumed nine standardized meals with known macronutrients amounts (carbohydrate, protein, and fat) while wearing a CGM. We built a multitask neural network to estimate the macronutrient composition from the CGM signal, and compared it against a baseline linear regression. The best prediction result comes from our proposed neural network, trained with subject-dependent data, as measured by root mean squared relative error and correlation coefficient. These findings suggest that it is possible to estimate macronutrient composition from CGM signals, opening the possibility to develop automatic techniques to track food intake.
翻译:T2DM临床干预措施的基本组成部分是监测饮食摄入量,将血浆甘蔗含量保持在可接受的范围内。然而,目前监测食物摄入量的技术是时间密集和容易出错的。为解决这一问题,我们正在开发技术,利用连续的葡萄糖监测器(CGMs)自动监测食物摄入量和这些食物的构成情况。本文章介绍了临床研究的结果,参与者在临床研究中消费了九种标准膳食,其已知的大型营养素含量(碳水化合物、蛋白质和脂肪),同时使用碳水化合物。我们建立了一个多任务神经网络,从碳水化合物信号中估算宏观营养素成分,并将其与基线线性回归进行比较。最佳预测结果来自我们拟议的神经网络,通过以根平均值相对错误和相关系数测量的根据主题数据进行培训。这些研究结果表明,有可能从碳氢化合物信号中估算大型营养素成分的构成,从而开发自动技术跟踪食物摄入量的可能性。