Origin-Destination (O-D) travel demand prediction is a fundamental challenge in transportation. Recently, spatial-temporal deep learning models demonstrate the tremendous potential to enhance prediction accuracy. However, few studies tackled the uncertainty and sparsity issues in fine-grained O-D matrices. This presents a serious problem, because a vast number of zeros deviate from the Gaussian assumption underlying the deterministic deep learning models. To address this issue, we design a Spatial-Temporal Zero-Inflated Negative Binomial Graph Neural Network (STZINB-GNN) to quantify the uncertainty of the sparse travel demand. It analyzes spatial and temporal correlations using diffusion and temporal convolution networks, which are then fused to parameterize the probabilistic distributions of travel demand. The STZINB-GNN is examined using two real-world datasets with various spatial and temporal resolutions. The results demonstrate the superiority of STZINB-GNN over benchmark models, especially under high spatial-temporal resolutions, because of its high accuracy, tight confidence intervals, and interpretable parameters. The sparsity parameter of the STZINB-GNN has physical interpretation for various transportation applications.
翻译:最近,空间深层学习模型显示了提高预测准确性的巨大潜力;然而,很少有研究解决微粒的O-D矩阵中的不确定性和聚变问题。这是一个严重的问题,因为大量零偏离了确定性深层次学习模型所依据的高斯假设。为了解决这一问题,我们设计了一个空间时空零膨胀零入负二线图像神经网络(STZINB-GNN),以量化稀有旅行需求的不确定性。它利用扩散和时空混和网络分析空间和时间相关关系,这些网络随后结合起来将旅行需求的概率分布参数化。STZINB-GNN正在使用两个具有各种空间和时间分辨率的真实世界数据集进行审查。结果显示STZINB-GNN优于基准模型,特别是在高空间时空分辨率下,因为其高度精确性、密切的间隔和可解释性参数很高。STRINZ的物理参数具有STRINZ的物理参数。