We introduce NIFT, Neural Interaction Field and Template, a descriptive and robust interaction representation of object manipulations to facilitate imitation learning. Given a few object manipulation demos, NIFT guides the generation of the interaction imitation for a new object instance by matching the Neural Interaction Template (NIT) extracted from the demos in the target Neural Interaction Field (NIF) defined for the new object. Specifically, the NIF is a neural field that encodes the relationship between each spatial point and a given object, where the relative position is defined by a spherical distance function rather than occupancies or signed distances, which are commonly adopted by conventional neural fields but less informative. For a given demo interaction, the corresponding NIT is defined by a set of spatial points sampled in the demo NIF with associated neural features. To better capture the interaction, the points are sampled on the Interaction Bisector Surface (IBS), which consists of points that are equidistant to the two interacting objects and has been used extensively for interaction representation. With both point selection and pointwise features defined for better interaction encoding, NIT effectively guides the feature matching in the NIFs of the new object instances such that the relative poses are optimized to realize the manipulation while imitating the demo interactions. Experiments show that our NIFT solution outperforms state-of-the-art imitation learning methods for object manipulation and generalizes better to objects from new categories.


翻译:我们引入了 NIFT、 神经互动字段和模板, 一个描述性和强健的互动演示, 显示物体操纵的物体操作, 以便于模仿学习。 在少数物体操纵演示中, NIFT通过匹配从目标神经互动字段中为新对象定义的演示中提取的神经互动模版( NIT) 来引导新对象的相互作用仿真。 具体地说, NIF是一个神经场, 它将每个空间点和给定对象之间的关系编码起来, 相对位置由球形距离函数而不是占位或签名距离来定义, 通常由常规神经外观字段采用, 但信息较少。 对于特定显示的演示互动, 相应的 NIT 则由一组在测试NIFT时抽样的一组空间点来定义。 为了更好地捕捉这些互动, 这些点是在互动的界面上进行抽样, 它包含与两个互动对象相对相近的点, 并被广泛用于互动演示。 与更佳的天体对目标进行更精确的定位和点定位特性调定, NIT 有效地指导了在测试中进行比对新方式进行自我调整的方式。</s>

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
21+阅读 · 2018年5月23日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员