A key goal of unsupervised representation learning is "inverting" a data generating process to recover its latent properties. Existing work that provably achieves this goal relies on strong assumptions on relationships between the latent variables (e.g., independence conditional on auxiliary information). In this paper, we take a very different perspective on the problem and ask, "Can we instead identify latent properties by leveraging knowledge of the mechanisms that govern their evolution?" We provide a complete characterization of the sources of non-identifiability as we vary knowledge about a set of possible mechanisms. In particular, we prove that if we know the exact mechanisms under which the latent properties evolve, then identification can be achieved up to any equivariances that are shared by the underlying mechanisms. We generalize this characterization to settings where we only know some hypothesis class over possible mechanisms, as well as settings where the mechanisms are stochastic. We demonstrate the power of this mechanism-based perspective by showing that we can leverage our results to generalize existing identifiable representation learning results. These results suggest that by exploiting inductive biases on mechanisms, it is possible to design a range of new identifiable representation learning approaches.


翻译:未经监督的代议制学习的关键目标是“ 反转” 数据生成过程, 以恢复其潜在属性。 可能实现此目标的现有工作取决于对潜在变量之间关系的强烈假设( 例如, 以辅助信息为条件的独立)。 在本文中,我们对问题持截然不同的观点,并问 : “ 我们能否通过利用指导其演变的机制的知识来识别潜在属性?” 我们提供了对不可识别性来源的完整描述,因为我们对一套可能的机制的了解各不相同。 特别是, 我们证明,如果我们知道潜在属性演变的确切机制,那么,就可以找到基础机制所共有的任何等同的。 我们把这种定性概括到各种环境,我们只知道关于可能的机制的一些假设类别,以及机制具有随机性的环境。 我们展示了基于机制的视角的力量,表明我们能够利用我们的成果来普及现有的可识别的代议制学习结果。 这些结果表明,通过利用机制的暗示偏见,我们有可能设计一系列新的可识别的代表制学习方法。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
31+阅读 · 2020年4月23日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
163+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
149+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
64+阅读 · 2021年6月18日
Arxiv
13+阅读 · 2021年5月25日
Arxiv
56+阅读 · 2021年5月3日
Arxiv
5+阅读 · 2020年3月26日
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
Arxiv
3+阅读 · 2018年2月7日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
64+阅读 · 2021年6月18日
Arxiv
13+阅读 · 2021年5月25日
Arxiv
56+阅读 · 2021年5月3日
Arxiv
5+阅读 · 2020年3月26日
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
Arxiv
3+阅读 · 2018年2月7日
Top
微信扫码咨询专知VIP会员