To analyze nonlinear dynamic systems, we developed a new technique based on the square matrix method. We propose this technique called the \convergence map" for generating particle stability diagrams similar to the frequency maps widely used in accelerator physics to estimate dynamic aperture. The convergence map provides similar information as the frequency map but in a much shorter computing time. The dynamic equation can be rewritten in terms of action-angle variables provided by the square matrix derived from the accelerator lattice. The convergence map is obtained by solving the exact nonlinear equation iteratively by the perturbation method using Fourier transform and studying convergence. When the iteration is convergent, the solution is expressed as a quasi-periodic analytical function as a highly accurate approximation, and hence the motion is stable. The border of stable motion determines the dynamical aperture. As an example, we applied the new method to the nonlinear optimization of the NSLS-II storage ring and demonstrated a dynamic aperture comparable to or larger than the nominal one obtained by particle tracking. The computation speed of the convergence map is 30 to 300 times faster than the speed of the particle tracking, depending on the size of the ring lattice (number of superperiods). The computation speed ratio is larger for complex lattices with low symmetry, such as particle colliders.
翻译:为了分析非线性动态系统, 我们开发了一种基于平方基体方法的新技术。 我们提议了这种技术, 名为 \ convergence 映射 ”, 用于生成粒子稳定性图, 类似于在加速器物理中广泛使用的频率图, 以估计动态孔径。 聚合映射提供了类似于频率图的类似信息, 但是在更短的计算时间内。 动态方程式可以用从加速器 lattice 提供的平方体提供的动作角变量重写。 聚合映射图是通过使用 Fourier 变异和研究趋同法通过渗透法迭接地解析精确的非线性方形。 当迭代图是趋同式时, 溶解方式表现为半周期分析函数, 以高度精确的近似值表示, 因此运动是稳定的。 稳定运动的边框决定着动态孔径。 例如, 我们用新的方法对NSLS- II 存储环的非线形优化, 并展示一种可比通过粒子跟踪获得的标度更大或更大的动态孔数的动态孔径。 。 聚合图的计算速度是30至300 。, 的折算速度比 。 。 粒子 粒子的粒状号的计算速度要快速度要快至 。