We study a class of McKean--Vlasov Stochastic Differential Equations (MV-SDEs) with drifts and diffusions having super-linear growth in measure and space -- the maps have general polynomial form but also satisfy a certain monotonicity condition. The combination of the drift's super-linear growth in measure (by way of a convolution) and the super-linear growth in space and measure of the diffusion coefficient require novel technical elements in order to obtain the main results. We establish wellposedness, propagation of chaos (PoC), and under further assumptions on the model parameters we show an exponential ergodicity property alongside the existence of an invariant distribution. No differentiability or non-degeneracy conditions are required. Further, we present a particle system based Euler-type split-step scheme (SSM) for the simulation of this type of MV-SDEs. The scheme attains, in stepsize, the strong error rate $1/2$ in the non-path-space root-mean-square error metric and we demonstrate the property of mean-square contraction. Our results are illustrated by numerical examples including: estimation of PoC rates across dimensions, preservation of periodic phase-space, and the observation that taming appears to be not a suitable method unless strong dissipativity is present.
翻译:我们研究的是流体-Vlasov-Stochatic 差异的等级(McKan-Vlasov-SDEs),其漂移和扩散在测量和空间上具有超线性增长 -- -- 地图具有一般的多元形式,但也满足了某种单一性条件。漂移的超线性增长(通过卷变的方式)与空间和扩散系数的超线性增长相结合,需要新的技术元素才能获得主要结果。我们在模型参数的假设下,确定了稳妥性、混乱的传播(PoC)以及我们所显示的指数性垂直性属性,同时存在一种不变化分布。不需要有差异性或非降解性条件。此外,我们提出了一种基于粒子系统超线性增长(通过卷变方式)的超线性增长和空间扩散系数的超线性增长(SSSSM-SDEs),这计划在步骤化中达到了强的误差率1/2美元,在非空间根平方平方差差误差(Poareal-qual road)错误测量和我们所显示的稳度比例方法的特征(包括正位缩缩缩的模型的特征的特征的特征的特征),我们所展示的模型的模型的特征的特征是非数字缩化的特征。