We present an analysis and numerical study of an optimal control problem for the Landau-de Gennes (LdG) model of nematic liquid crystals (LCs), which is a crucial component in modern technology. They exhibit long range orientational order in their nematic phase, which is represented by a tensor-valued (spatial) order parameter $Q = Q(x)$. Equilibrium LC states correspond to $Q$ functions that (locally) minimize an LdG energy functional. Thus, we consider an $L^2$-gradient flow of the LdG energy that allows for finding local minimizers and leads to a semi-linear parabolic PDE, for which we develop an optimal control framework. We then derive several a priori estimates for the forward problem, including continuity in space-time, that allow us to prove existence of optimal boundary and external ``force'' controls and to derive optimality conditions through the use of an adjoint equation. Next, we present a simple finite element scheme for the LdG model and a straightforward optimization algorithm. We illustrate optimization of LC states through numerical experiments in two and three dimensions that seek to place LC defects (where $Q(x) = 0$) in desired locations, which is desirable in applications.
翻译:我们介绍了液晶(LC)的Landau-de Gennes(LdG)模型的最优控制问题的分析和数值研究,这是现代技术的重要组成部分。在其向列相中,LC具有远距定向序,由张量值(空间)序参数 $Q=Q(x)$ 表示。平衡LC状态对应于局部最小化LdG能量泛函的 $Q$ 函数。因此,我们考虑LdG能量的 $L^2$-梯度流以寻找局部极小值,并导致一个半线性抛物PDE,对其进行了最优控制框架的开发。我们接着推导了前向问题的几个先验估计,包括时空连续性,允许我们通过一个伴随方程来证明最优边界和外部“力”控制存在,并导出最优性条件。接下来,我们提出了LdG模型的简单有限元方案和简单的优化算法。我们通过二维和三维的数值实验来说明通过寻求在所需位置放置液晶缺陷(其中 $Q(x)=0$ )来进行液晶状态的优化,这在应用中是很有意义的。