Unsupervised Domain Adaptation (UDA) for point cloud classification is an emerging research problem with relevant practical motivations. Reliance on multi-task learning to align features across domains has been the standard way to tackle it. In this paper, we take a different path and propose RefRec, the first approach to investigate pseudo-labels and self-training in UDA for point clouds. We present two main innovations to make self-training effective on 3D data: i) refinement of noisy pseudo-labels by matching shape descriptors that are learned by the unsupervised task of shape reconstruction on both domains; ii) a novel self-training protocol that learns domain-specific decision boundaries and reduces the negative impact of mislabelled target samples and in-domain intra-class variability. RefRec sets the new state of the art in both standard benchmarks used to test UDA for point cloud classification, showcasing the effectiveness of self-training for this important problem.
翻译:用于点云分类的无监管域域适应(UDA)是一个新出现的研究问题,它具有相关的实际动机。依赖多任务学习以协调跨域的特征一直是解决该问题的标准方法。在本文中,我们选择了不同的路径并提出了RefRec,这是在UDA中调查点云假标签和自我培训的第一种方法。我们提出了使自我培训对3D数据产生效力的两个主要创新:i)通过匹配在两个域的形状重建未受监管的任务中所学的形状描述符来改进噪音的伪标签;ii)一种新的自我培训协议,它学习特定域的决定界限,并减少错误标签目标样本和内部分类内部差异的负面影响。RefRec在用于测试UDA对点云分类的两种标准基准中设定了艺术的新状态,展示了针对这一重要问题的自我培训的有效性。