The minimization of propositional formulae is a classical problem in logic, whose first algorithms date back at least to the 1950s with the works of Quine and Karnaugh. Most previous work in the area has focused on obtaining minimal, or quasi-minimal, formulae in conjunctive normal form (CNF) or disjunctive normal form (DNF), with applications in hardware design. In this paper, we are interested in the problem of obtaining an equivalent formula in any format, also allowing connectives that are not present in the original formula. We are primarily motivated in applying minimization algorithms to generate natural language translations of the original formula, where using shorter equivalents as input may result in better translations. Recently, Buchfuhrer and Umans have proved that the (decisional version of the) problem is $\Sigma_2^p$-complete. We analyze three possible (practical) approaches to solving the problem. First, using brute force, generating all possible formulae in increasing size and checking if they are equivalent to the original formula by testing all possible variable assignments. Second, generating the Tseitin coding of all the formulae and checking equivalence with the original using a SAT solver. Third, encoding the problem as a Quantified Boolean Formula (QBF), and using a QBF solver. Our results show that the QBF approach largely outperforms the other two.
翻译:在逻辑上,最起码的公式是典型的逻辑问题,其第一个算法至少可以追溯到1950年代,与Quine和Karnaugh的作品相同。该地区以前的大部分工作侧重于获得最小或准微量的公式,以正态和准正态形式(CNF)或非正态形式(DNF),并应用硬件设计。在本文件中,我们关心获得任何格式的等同公式的问题,并允许原始公式中不存在的连接。我们的主要动力是应用最小化算法,生成原始公式的自然语言翻译,其中使用较短的等值作为投入,可以产生更好的翻译。最近,Buchfuerch和Umans已经证明,该公式的确定版本是$\Sigma_2<unk> p$-commus。我们分析了解决该问题的三种可能(实用的)方法。首先,使用粗力生成所有可能的公式,通过测试所有可能的可变式任务,从而确定它们是否等同于原始公式。第二,生成Tsetin Q,将所有原始的Q Q, 基本的公式与原始的版本,使用我们FIFFFF 的公式核对, 显示一个原始的原始的公式的版本。</s>