Knowledge graphs represent known facts using triplets. While existing knowledge graph embedding methods only consider the connections between entities, we propose considering the relationships between triplets. For example, let us consider two triplets $T_1$ and $T_2$ where $T_1$ is (Academy_Awards, Nominates, Avatar) and $T_2$ is (Avatar, Wins, Academy_Awards). Given these two base-level triplets, we see that $T_1$ is a prerequisite for $T_2$. In this paper, we define a higher-level triplet to represent a relationship between triplets, e.g., $\langle T_1$, PrerequisiteFor, $T_2\rangle$ where PrerequisiteFor is a higher-level relation. We define a bi-level knowledge graph that consists of the base-level and the higher-level triplets. We also propose a data augmentation strategy based on the random walks on the bi-level knowledge graph to augment plausible triplets. Our model called BiVE learns embeddings by taking into account the structures of the base-level and the higher-level triplets, with additional consideration of the augmented triplets. We propose two new tasks: triplet prediction and conditional link prediction. Given a triplet $T_1$ and a higher-level relation, the triplet prediction predicts a triplet that is likely to be connected to $T_1$ by the higher-level relation, e.g., $\langle T_1$, PrerequisiteFor, ?$\rangle$. The conditional link prediction predicts a missing entity in a triplet conditioned on another triplet, e.g., $\langle T_1$, PrerequisiteFor, (Avatar, Wins, ?)$\rangle$. Experimental results show that BiVE significantly outperforms all other methods in the two new tasks and the typical base-level link prediction in real-world bi-level knowledge graphs.
翻译:知识图形代表了使用三重线的已知事实。 虽然现有的知识图形嵌入方法仅考虑三重体间的联系, 我们建议考虑三重体间的关系。 例如, 我们考虑两个三重体T_ 1美元和2美元T_ 1美元( Academy_ Awards, Nates, Astatar) 和 $T_ 2美元( Avators, Wins, CAS_ Awards ) 。 鉴于这两个基级的三重体间, 我们发现 $_ 1 美元三重体间是 $ T_ 2美元 的前提。 在本文件中, 我们定义了一个更高的三重体间关系, 例如, $ 1 leg T_ 1 美元, PrerererequitFors, $ 2 leglegal Orights, 我们定义了一个双层知识级的双层知识图。 3级的计算结果由双层的双层平级关系显示。 我们的模型和双层的计算结果, 我们的基级的基级的计算, 一个基级的基级的基级的基级的计算, 一个基级, 一个基级的基级, 一个基级的基级的基级, 一个基级的基级的基级的基级的基级的基级, 一个基级的基级的基级的基级, 一个基级, 一个基级, 一个基级, 一个基级, 一个基级, 一个基级, 一个基级, 一个基级, 一个基级, 一个基级, 一个基级, 一个基级, 一个基级, 一个基级, 一个基级, 一个基级, 一个基级, 一个基级, 一个基级, 一个基级, 一个基级, 一个基级, 一个基级, 一个基级, 一个基级, 一个基级, 一个基级, 一个基级, 一个基级, 一个基级, 一个基级, 一个基级, 一个基级, 一个基级, 一个基级, 一个基级, 一个基级, 一个基级,一个基级,一个基级,一个基级,一个基级,一个基级,一个基级,一个基级,一个基级,一个基级,一个基级,一个基级,一个基级,一个基级,