We propose a method of head-related transfer function (HRTF) interpolation from sparsely measured HRTFs using an autoencoder with source position conditioning. The proposed method is drawn from an analogy between an HRTF interpolation method based on regularized linear regression (RLR) and an autoencoder. Through this analogy, we found the key feature of the RLR-based method that HRTFs are decomposed into source-position-dependent and source-position-independent factors. On the basis of this finding, we design the encoder and decoder so that their weights and biases are generated from source positions. Furthermore, we introduce an aggregation module that reduces the dependence of latent variables on source position for obtaining a source-position-independent representation of each subject. Numerical experiments show that the proposed method can work well for unseen subjects and achieve an interpolation performance with only one-eighth measurements comparable to that of the RLR-based method.
翻译:我们建议一种与头有关的转移函数(HRTF)的内插方法,该方法来自使用有源位置调节的自动编码器的测量偏少的HRTF。拟议方法来自基于常规线性回归(RLR)的HRTF内插法与自动编码器之间的类推。通过这一类推,我们发现基于RLF的方法的关键特征是,基于源位置的HRTF被分解成依赖源位置和来源位置独立的因素。根据这一发现,我们设计了编码器和解码器,以便其重量和偏差来自源位置。此外,我们引入了一个聚合模块,以减少潜在变量对源位置的依赖性,从而获得来源位置对每个主题的独立代表。数字实验表明,拟议的方法对看不见主题有效,并实现一种内插性表现,只有八分之一的测量与基于源位置方法的测量值相当。