We introduce a new paradigm for immersed finite element and isogeometric methods based on interpolating function spaces from an unfitted background mesh into Lagrange finite element spaces defined on a foreground mesh that captures the domain geometry but is otherwise subject to minimal constraints on element quality or connectivity. This is a generalization of the concept of Lagrange extraction from the isogeometric analysis literature and also related to certain variants of the finite cell and material point methods. Crucially, the interpolation may be approximate without sacrificing high-order convergence rates, which distinguishes the present method from existing finite cell, CutFEM, and immersogeometric approaches. The interpolation paradigm also permits non-invasive reuse of existing finite element software for immersed analysis. We analyze the properties of the interpolation-based immersed paradigm for a model problem and implement it on top of the open-source FEniCS finite element software, to apply it to a variety of problems in fluid, solid, and structural mechanics where we demonstrate high-order accuracy and applicability to practical geometries like trimmed spline patches.
翻译:我们采用一种新的模式,根据从不合适的背景网格中将功能空间从不合适的背景网格中将功能空间内插到从表面表面网格中界定的拉格朗定点空间上,以捕捉领域几何,但以其他方式在元素质量或连通性方面受到最低限度的限制。这是对从同位素分析文献中抽取拉格朗格概念的概括,也与有限的细胞和材料点方法的某些变体有关。关键是,这种内插可能是近似而不会牺牲高顺序汇合率,这与现有的有限细胞、CutFEM和immersogoographic 方法有区别。这种内插模式还允许不侵入地再利用现有的有限要素软件进行浸入式分析。我们分析了基于内插的浸入式模型问题的特性,并在开放源FENICS定点元素软件的顶端上加以应用,以便将其应用于液体、固体和结构机械方面的多种问题,在那里我们展示高顺序准确性和对实用的地理构成,例如三模网膜的定式组合的精确性和适用性。