Event cameras are ideally suited to capture HDR visual information without blur but perform poorly on static or slowly changing scenes. Conversely, conventional image sensors measure absolute intensity of slowly changing scenes effectively but do poorly on high dynamic range or quickly changing scenes. In this paper, we present an event-based video reconstruction pipeline for High Dynamic Range (HDR) scenarios. The proposed algorithm includes a frame augmentation pre-processing step that deblurs and temporally interpolates frame data using events. The augmented frame and event data are then fused using a novel asynchronous Kalman filter under a unifying uncertainty model for both sensors. Our experimental results are evaluated on both publicly available datasets with challenging lighting conditions and fast motions and our new dataset with HDR reference. The proposed algorithm outperforms state-of-the-art methods in both absolute intensity error (48% reduction) and image similarity indexes (average 11% improvement).


翻译:活动相机非常适合在静态或缓慢变化的场景中捕捉《人类发展报告》的视觉信息,不模糊,但效果不佳。相反,常规图像传感器有效地测量缓慢变化场景的绝对强度,但在高动态场景或快速变化场景上却差强人意。在本文件中,我们展示了高动态场景(HDR)情景事件视频重建管道。拟议的算法包括一个增强前处理步骤,该步骤将利用事件来分解和时间间间插框架数据。随后,扩大的框架和事件数据在两个传感器的统一不确定性模型下使用一个新的非同步的卡尔曼过滤器进行整合。我们的实验结果在公开的数据集上进行了评估,这些数据集具有挑战性照明条件和快速运动,以及我们用《人类发展报告》参考资料的新数据集。拟议的算法在绝对强度误差(48%的减少)和图像相似指数(平均11%的改进)中都优于最先进的方法。

0
下载
关闭预览

相关内容

卡尔曼滤波是一种高效率的递归滤波器(自回归滤波器),它能够从一系列的不完全及包含噪声的测量中,估计动态系统的状态。
专知会员服务
52+阅读 · 2020年9月7日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
109+阅读 · 2020年3月12日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
跟踪SLAM前沿动态系列之ICCV2019
泡泡机器人SLAM
7+阅读 · 2019年11月23日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡一分钟】利用多相机系统实现鲁棒的视觉里程计
泡泡机器人SLAM
5+阅读 · 2018年12月31日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Arxiv
0+阅读 · 2021年12月14日
Arxiv
0+阅读 · 2021年12月10日
Arxiv
6+阅读 · 2019年4月4日
Video-to-Video Synthesis
Arxiv
9+阅读 · 2018年8月20日
Arxiv
7+阅读 · 2017年12月26日
VIP会员
相关资讯
跟踪SLAM前沿动态系列之ICCV2019
泡泡机器人SLAM
7+阅读 · 2019年11月23日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡一分钟】利用多相机系统实现鲁棒的视觉里程计
泡泡机器人SLAM
5+阅读 · 2018年12月31日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Top
微信扫码咨询专知VIP会员