This work considers the problem of super-resolution. The goal is to resolve a Dirac distribution from knowledge of its discrete, low-pass, Fourier measurements. Classically, such problems have been dealt with parameter estimation methods. Recently, it has been shown that convex-optimization based formulations facilitate a continuous time solution to the super-resolution problem. Here we treat super-resolution from low-pass measurements in Phase Space. The Phase Space transformation parametrically generalizes a number of well known unitary mappings such as the Fractional Fourier, Fresnel, Laplace and Fourier transforms. Consequently, our work provides a general super- resolution strategy which is backward compatible with the usual Fourier domain result. We consider low-pass measurements of Dirac distributions in Phase Space and show that the super-resolution problem can be cast as Total Variation minimization. Remarkably, even though are setting is quite general, the bounds on the minimum separation distance of Dirac distributions is comparable to existing methods.
翻译:这项工作考虑了超分辨率问题。 目标是从对离散、 低通道、 Fourier 测量的知识中解决Dirac分布问题。 典型地说, 这些问题已经用参数估计方法来解决。 最近, 已经证明基于 convex- 优化的配方有助于持续时间解决超分辨率问题。 我们在这里处理空间阶段低通道测量的超分辨率。 空间阶段转换从参数上将一些众所周知的统一绘图( 如Fractional Fourier、 Fresnel、 Laplace 和 Fourier 变异)概括为一般。 因此, 我们的工作提供了一种与通常的 Fourier 域结果相容的一般超分辨率战略。 我们考虑在空间阶段对 Dirac 分布进行低频度测量, 并表明超分辨率问题可以被作为完全减量化最小化。 值得注意的是, 尽管设置的设置相当笼统, Dirac 分布最小距离的界限与现有方法相似。