The paper presents fault-tolerant (FT) labeling schemes for general graphs, as well as, improved FT routing schemes. For a given $n$-vertex graph $G$ and a bound $f$ on the number of faults, an $f$-FT connectivity labeling scheme is a distributed data structure that assigns each of the graph edges and vertices a short label, such that given the labels of the vertices $s$ and $t$, and at most $f$ failing edges $F$, one can determine if $s$ and $t$ are connected in $G \setminus F$. The primary complexity measure is the length of the individual labels. Since their introduction by [Courcelle, Twigg, STACS '07], compact FT labeling schemes have been devised only for a limited collection of graph families. In this work, we fill in this gap by proposing two (independent) FT connectivity labeling schemes for general graphs, with a nearly optimal label length. This serves the basis for providing also FT approximate distance labeling schemes, and ultimately also routing schemes. Our main results for an $n$-vertex graph and a fault bound $f$ are: -- There is a randomized FT connectivity labeling scheme with a label length of $O(f+\log n)$ bits, hence optimal for $f=O(\log n)$. This scheme is based on the notion of cycle space sampling [Pritchard, Thurimella, TALG '11]. -- There is a randomized FT connectivity labeling scheme with a label length of $O(\log^3 n)$ bits (independent of the number of faults $f$). This scheme is based on the notion of linear sketches of [Ahn et al., SODA '12]. -- For $k\geq 1$, there is a randomized routing scheme that routes a message from $s$ to $t$ in the presence of a set $F$ of faulty edges, with stretch $O(|F|^2 k)$ and routing tables of size $\tilde{O}(f^3 n^{1/k})$. This significantly improves over the state-of-the-art bounds by [Chechik, ICALP '11], providing the first scheme with sub-linear FT labeling and routing schemes for general graphs.


翻译:本文为普通图解展示了错误容忍度( FT) 标签计划, 并且改进了 FT 路由方案。 对于给定的 $- verfex 图形 $G$ 美元, 和对断层数的约束美元, 美元- FT 连接标签计划是一个分布式的数据结构, 分配了每个图形边缘, 顶点标签为12美元, 美元, 最多是 $F3 的断层, 最多是 F3 美元。 对于一个给定的 $G\ setroup 美元, 美元 美元- 美元 美元- 美元。 主要的复杂度衡量标准是单个标签的长度。 自从[Courcelle, Twigg, STACS'07] 引入以来, 压缩FT 标签计划只设计了有限的图形家族。 在这项工作中, 我们用两个( 独立) FT 的连接度标签计划来填补这一缺口, 以近乎最佳的标签长度。

0
下载
关闭预览

相关内容

【上海交大】<操作系统> 2021课程,附课件
专知会员服务
41+阅读 · 2021年4月3日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
Arxiv
7+阅读 · 2021年7月5日
Arxiv
8+阅读 · 2020年10月12日
Arxiv
19+阅读 · 2020年7月13日
VIP会员
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
Top
微信扫码咨询专知VIP会员