The algebraic flux correction (AFC) schemes presented in this work constrain a standard continuous finite element discretization of a nonlinear hyperbolic problem to satisfy relevant maximum principles and entropy stability conditions. The desired properties are enforced by applying a limiter to antidiffusive fluxes that represent the difference between the high-order baseline scheme and a property-preserving approximation of Lax--Friedrichs type. In the first step of the limiting procedure, the given target fluxes are adjusted in a way that guarantees preservation of local and/or global bounds. In the second step, additional limiting is performed, if necessary,to ensure the validity of fully discrete and/or semi-discrete entropy inequalities. The limiter-based entropy fixes considered in this work are applicable to finite element discretizations of scalar hyperbolic equations and systems alike. The underlying inequality constraints are formulated using Tadmor's entropy stability theory. The proposed limiters impose entropy-conservative or entropy-dissipative bounds on the rate of entropy production by antidiffusive fluxes and Runge--Kutta (RK) time discretizations. Two versions of the fully discrete entropy fix are developed for this purpose. To motivate the use of limiter-based entropy fixes, we prove a finite element version of the Lax--Wendroff theorem and perform numerical studies for standard test problems. In our numerical experiments, entropy-dissipative schemes converge to correct weak solutions of scalar conservation laws, of the Euler equations, and of the shallow water equations.


翻译:本文中介绍的藻类通量校正(AFC) 计划限制非线性双曲性问题的标准连续限制元素离散, 以满足相关最大原则和增温稳定性条件。 想要的特性通过对代表高序基线方案和拉克斯- 弗瑞德丰富方程式类型之差的抗反异通量调节器实施限值。 在限制程序的第一步, 给定目标通量的调整方式可以保证保存本地和/ 或全球界限。 第二步, 如果必要, 将执行额外的限制, 以确保完全离散和/ 或半异性变异酶不平等的有效性。 本文中考虑的基于限值的变异性通性修正适用于高压- 超离异方程式和系统等的异性元素离异性。 在限制程序的第一步中, 定值的不平等限制是使用塔德摩尔基的恒定稳定性理论理论理论。 拟议的限值将nro- 固值或正反异性变异变异变异法的内程- 系统- 的内流- 内基- 的内基- 变变变变变的内基- 机- 的内基- 流- 流- 的内基- 机- 流- 流- 的内基- 的内基- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 和- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流-

0
下载
关闭预览

相关内容

专知会员服务
11+阅读 · 2021年7月27日
专知会员服务
52+阅读 · 2020年11月3日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月24日
VIP会员
相关VIP内容
专知会员服务
11+阅读 · 2021年7月27日
专知会员服务
52+阅读 · 2020年11月3日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员