In this paper the results of Radloff and Schwabe (2019a) will be extended for a special class of symmetrical intensity functions. This includes binary response models with logit and probit link. To evaluate the position and the weights of the two non-degenerated orbits on the $k$-dimensional ball usually a system of three equations has to be solved. The symmetry allows to reduce this system to a single equation. As a further result, the number of support points can be reduced to the minimal number. These minimally supported designs are highly efficient. The results can be generalized to arbitrary ellipsoidal design regions.
翻译:在本文件中,Radloff和Schwabe(2019a)的结果将扩大到一个特殊类别的对称强度功能,其中包括带有对线和线链接的二元反应模型。要评估美元-维球上两个非自产生轨道的位置和重量,通常需要解决三个方程的系统。对称允许将这个系统降为单一方程。进一步的结果是,支持点的数量可以减少到最低数量。这些得到极少支持的设计非常有效。结果可以推广到任意的单线设计区域。