Wormlike micelles are self-assemblies of polymer chains that can break and recombine reversibly. In this paper, we derive a thermodynamically consistent two species micro-macro model of wormlike micellar solutions by employing an energetic variational approach. The model incorporates a breakage and combination process of polymer chains into the classical micro-macro dumbbell model for polymeric fluids in a unified variational framework. We also study different maximum entropy closure approximations to the new model by "variation-then-closure" and "closure-then-variation" approaches. By imposing proper dissipation in the coarse-grained level, the closure model, obtained by "closure-then-approximation", preserves the thermodynamical structure of both mechanical and chemical parts of the original system. Several numerical examples show that the closure model can capture the key rheological features of wormlike micellar solutions in shear flows.
翻译:虫状小鼠是聚合物链的自我组装装置,可以破碎和反转再生。 在本文中,我们通过采用强力变异方法,产生了一种热动力一致的两个物种微微生物模型,即虫状小鼠溶液。该模型将聚合物链的碎裂和组合过程纳入一个统一的变异框架内聚合液的古典微型小鼠哑铃模型中。我们还通过“变异-正闭锁”和“闭锁-正变换”方法,研究新模型的不同的最大酶闭合近似值。通过在粗糙的悬浮水平上施以适当的分解,通过“闭合-正合”获得的封闭模型,保留了原系统机械和化学部分的热动力结构。几个数字实例显示,封闭模型可以捕捉到原系统中微虫状小鼠类溶液的关键病理特征。