We propose a general-purpose approach for improving the ability of Large Language Models (LLMs) to intelligently and adaptively gather information from a user or other external source using the framework of sequential Bayesian experimental design (BED). This enables LLMs to act as effective multi-turn conversational agents and interactively interface with external environments. Our approach, which we call BED-LLM (Bayesian Experimental Design with Large Language Models), is based on iteratively choosing questions or queries that maximize the expected information gain (EIG) about the task of interest given the responses gathered previously. We show how this EIG can be formulated (and then estimated) in a principled way using a probabilistic model derived from the LLM's predictive distributions and provide detailed insights into key decisions in its construction and updating procedure. We find that BED-LLM achieves substantial gains in performance across a wide range of tests based on the 20 questions game and using the LLM to actively infer user preferences, compared to direct prompting of the LLM and other adaptive design strategies.
翻译:本文提出一种通用方法,旨在利用序贯贝叶斯实验设计框架,提升大语言模型从用户或其他外部来源智能且自适应地采集信息的能力。该方法使大语言模型能够作为高效的多轮对话代理,并与外部环境进行交互式对接。我们提出的方法称为BED-LLM(基于大语言模型的贝叶斯实验设计),其核心在于迭代地选择能够最大化期望信息增益的问题或查询,该增益是针对给定已收集响应后感兴趣任务的信息增量。我们阐述了如何基于大语言模型预测分布导出的概率模型,以原则性方式对此期望信息增益进行形式化定义与估计,并深入剖析了模型构建与更新过程中的关键决策。实验表明,在基于“20个问题”游戏的广泛测试以及利用大语言模型主动推断用户偏好的任务中,相较于对大语言模型的直接提示及其他自适应设计策略,BED-LLM在性能上取得了显著提升。